

Generating synthetic microdata to widen access to sensitive data sets

Beata Nowok, Gillian Raab & Chris Dibben

Administrative Data Research
Centre – Scotland

Research context: ADMINISTRATIVE MICRODATA

- SYLLS = SYnthetic data estimation for the UK LongitudinaL Studies (LSs): sample from the Census linked to administrative data (births, deaths, marriages, health)
- ADRC-S = Administrative Data Research Centre -Scotland:
 - major Scottish administrative datasets (housing, transport, income, labour markets, health, crime and criminal justice, education, social services)

Research context: RESTRICTED ACCESS

Safe setting

- ONS LS (England & Wales): London, Titchfield and Newport,
- SLS (Scotland): Edinburgh,
- NILS (Northern Ireland): Belfast.

Remote access

- only variable names and labels are provided to the researcher in order to build syntax,
- a Support Officer run syntax on real data set.

Small user base

Project aims

- Widening access to census-linked UK longitudinal studies while protecting confidentiality:
 - Devise a method of generating bespoke synthetic data extracts to match individual user data requests,
 - Bespoke data should look and behave (statistically) like real data so researchers can experiment and refine research without having to travel to safe settings.
- Make some bespoke synthetic data sets available for teaching

Synthetic data: background

- Similar initiatives in USA and Germany
- Previous work has focused on using multiple versions of synthesised data to make inferences to the population (proper synthesis)
- BUT most users will only wish to get results close to what would be found for the real data
- This needs a simpler approach with just a single synthetic sample
- It assumes users will run the final analysis on the real data

Bespoke synthetic data extract

Non-disclosive fully synthetic version

Requested variables

No one is real

As many relationships as possible are preserved

Final analysis in safe settings

Provided to user

Generating fully-synthetic data

Sequentially replacing **original data values** with **synthetic values** generated from conditional probability distributions

Final result is a completely synthetic representation of the joint distribution

(if the models are true)

Synthesising model choices

General choices

- Parametric
- Semi-parametric (preserving the marginal distribution)
- Non-parametric (CART)

Choice criteria

- Preserving as many relationships as possible while protecting data confidentiality
- Handling diverse data types
- Feasible for large datasets
- Easy to implement with little tuning required

CART models

Build a tree

$$Y_j \sim (Y_0, \ldots, Y_{j-1})$$

- Generate Y_i by:
 - Running Y_j,...,Y_{j-1}
 down the tree
 - Sampling from the leaves

synthpop

synthpop: basic functionality

- A synthetic data set can be produced using a single command: syn (data)
- Can be run with default parameters according to the types of data encountered
- Or tailored for specific data sets, including options to match the structure of the real data

synthpop: basic functionality

- Optional parameters:
 - List of synthesising methods for each variable
 - Order in which variables should be synthesised
 - Detailed specification of predictors for each synthesised variable
 - Rules for dependencies between variables and structural zeros (e.g. rule age<16 sets marital status to "single")
 - Codes for missing values to be modelled (assuming MAR)

synthpop: example

```
> test <- syn(data)</pre>
syn variables
    sex age edu marital incomenm ls wkabint
> test
Call:
($call) syn(data = data)
Number of synthesised data sets:
(\$m) 1
First rows of synthesised data set:
($syn)
                            edu marital incomenm
                                                                 ls wkabint
    sex age
   MAN 81 PRIMARY/NO EDUCATION MARRIED
                                            1500
                                                             PLEASED
   MAN 54 VOCATIONAL/GRAMMAR MARRIED
                                            1700
                                                             PLEASED
                                            870
3 WOMAN 32 VOCATIONAL/GRAMMAR DIVORCED
                                                               MIXED
4 WOMAN 61 PRIMARY/NO EDUCATION MARRIED
                                            800 MOSTLY DISSATISFIED
5 WOMAN
        50 PRIMARY/NO EDUCATION MARRIED
                                                    MOSTLY SATISFIED
                                             NA
6 WOMAN 37 VOCATIONAL/GRAMMAR MARRIED
                                             158
                                                             PLEASED
Synthesising methods:
($method)
                                                 ls wkabint
                      edu marital incomenm
     sex
             age
"sample" "ctree" "ctree" "ctree" "ctree" "ctree"
Order of synthesis:
($visitSequence)
                      edu marital incomenm
                                                ls wkabint
     sex
             age
                        3
                                                  6
                                 4
Matrix of predictors:
($predictorMatrix)
        sex age edu marital incomenm ls wkabint
sex
                                   0 0
age
edu
marital
incomenm
```


NO

NO

NO

NO

NO

NO

1 s

wkabint.

synthpop: example

R code to synthesise: test <- syn(data)

And compare to real data: compare.synds(test, data)

synthpop: example

R code to synthesise:

test <- syn(data, m=10)

Fit to synthetic data:

fit.test <- glm.synds(
wkabint~sex+age+edu+log(incomenm),
object=test, family="binomial")</pre>

And compare to fit for real data:

compare.fit.syn(fit.test,
data, plot="Z")

Produces plot on RHS

Young men more likely
to intend to work abroad
– other factors do not matter.
Same conclusion from synthetic data

synthpop in practice

- Effort required to produce realistic synthetic data can be substantial
 - Understanding the data
 - Derived variables
 - Rules for restricted values
 - Codes for missing values
 - ...

Synthetic data: current status

- First version of the package now available bugs being fixed
- More work needs to be done to overcome computing limitations and get formal permissions from LS to release such data
- Prof Mark Elliott will be carrying out and reporting a formal disclosure control evaluation of the package shortly
- LSs users should shortly be able to request bespoke synthetic data sets to accompany data requests