

The potential of simulation for administrative data and social research

Mark Birkin,

Professor of Spatial Analysis and Policy, School of Geography, University of Leeds.

Content

Background to microsimulation Review of methods Microsimulation and the LS Conclusions and Next Steps

Background

Technique of microsimulation modelling (MSM) introduced into economics (Guy Orcutt) in 1950s

- Recognise the distributional consequences of economic and financial policies
- e.g. change in the **rules** for housing benefit or personal taxation

Background

Very early development of MSM in geography also – attributable to Torsten Hagerstrand

- migration (1958)
- innovation-diffusion (1967)

Introduction to the mainstream in 1970s e.g. Wilson and Pownall (1976)

Background

MSM also popular in other social science and policy contexts

- e.g. Mike Murphy (sociology/ anthropology)
- e.g. Jane Falkingham (health care)
- e.g. McFadden, Williams (transport)

Strong links to CA and especially agent-based modelling

- e.g. Jim Doran (political science)
- e.g. Land use models etc

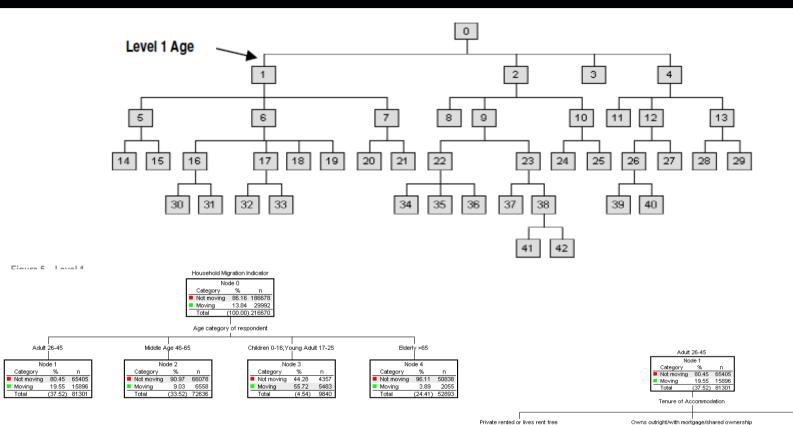
Example – Regeneration in Leeds

Rents from Council (Local Authority)

Node 7

Category % n Not moving 82.54 12297

Moving 17.46 2602 Total (6.88) 14899


Node 6

Not moving 85.21 46092

Moving 14.79 8000 Total (24.97) 54092

Category %

MicroSimulation Model

Node 5

Category % n Not moving 56.99 7016

Moving 43.01 5294 Total (5.68) 12310

Rooms Required

4;5

 Node 15

 Category
 %

 Not moving
 58.95
 3294

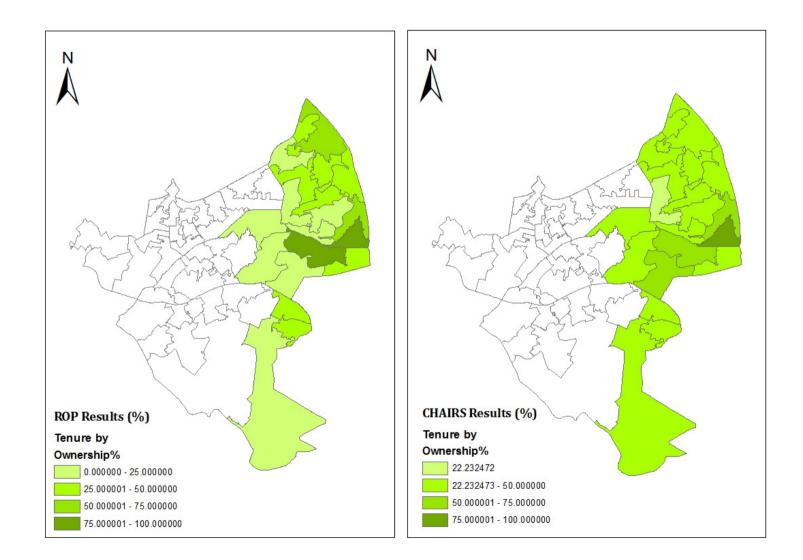
 Moving
 41.05
 2294

 Total
 (2.58)
 5588

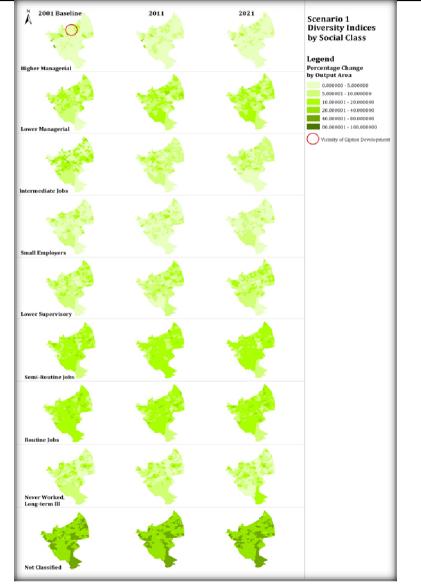
3;6;8;7;9;10;11;12

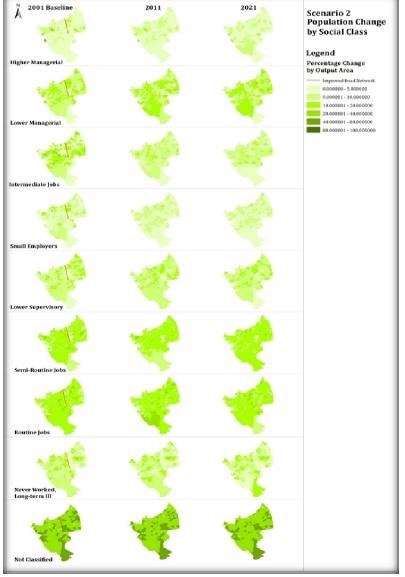
Node 14

Category % n Not moving 55.37 3722 Moving 44.63 3000 Total (3.10) 6722


Model Rules

Rules	Definitions						
Known areas	Households moves to area to which they are familiar						
Index of Multiple Deprivation	Households move to better quality areas						
Number of rooms requested	Households move to houses where the number of room is satisfactory						
Ethnicity preference	Households move to areas where the ethnic make-up is tolerable						
Transport routes available	Households move to areas where transport routes are readily available.						
Socioeconomic status	Households move to houses they can afford.						
Schools in proximity	Households containing school-aged children move to areas where schools are accessible.						


Model Validation



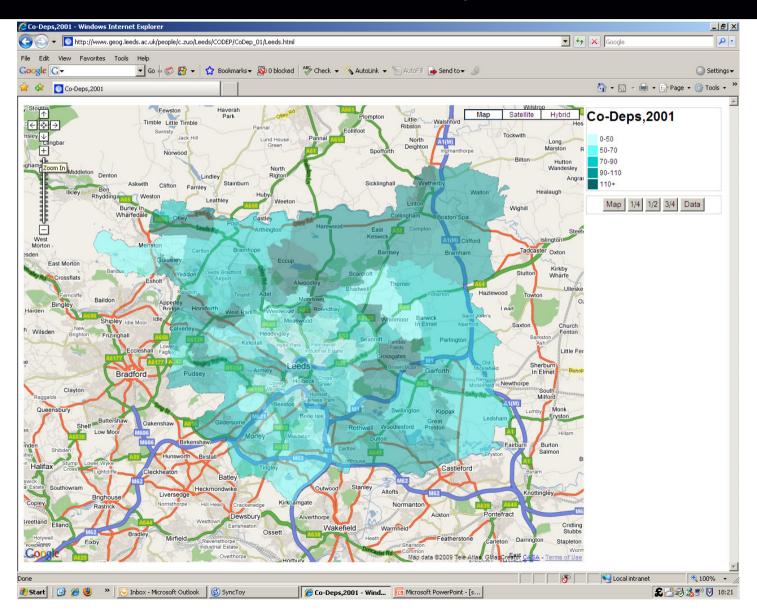
Scenario Analysis

Microsimulation Methods

Four fundamental components

- Population Reconstruction
- Projection
- Data Linkage
- Secondary models

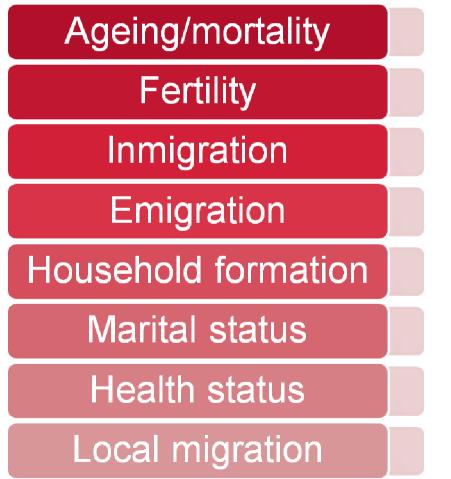
Population Reconstruction


Population Reconstruction

Methods are well-established

Conditional probabilities (iterative proportional fitting) (Birkin & Clarke,Beckmann et al) Deterministic reweighting (Smith, Procter) Regression-based methods (Tanton) Simulated annealing (Williamson, Ballas) Genetic algorithms (Birkin et al)

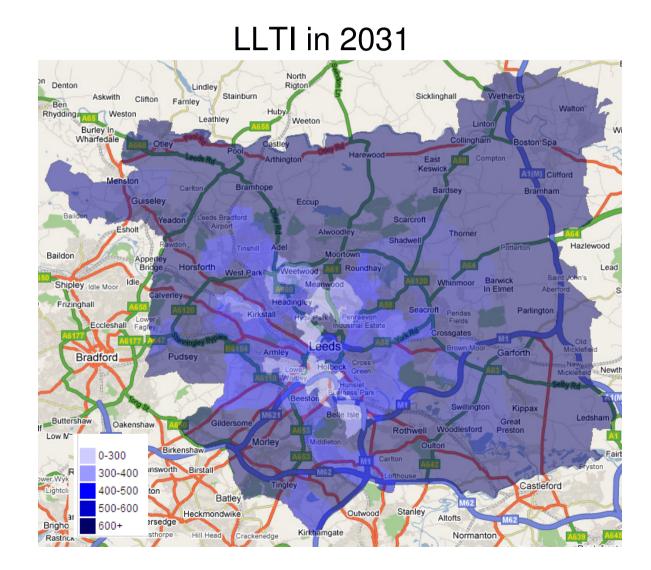
Population Reconstruction - Example им



Population Reconstruction - Example UNIVERSITY OF LEEDS

Moses Dynamic Model

Transition rates for fertility, mortality and migration are spatially disaggregated E.g. fertility: rates by age, marital status and location Event is simulated as a Monte Carlo process Example: married woman, aged 28, living in Aireborough Probability of maternity is 0.127 Pull a probability from a distribution of random numbers; if ≤ 0.127 then the event occurs All events in discrete intervals of one year Each module draws extensively on administrative sources


MoSeS Dynamic Model

mulation Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Gender	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Age	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
Location	Α	Α	Α	Α	А	А	А	Α	Α	А	Α	А	Α	А	А	А	А	А	А	А	А	А	Α	Α	Α	Α	Α	Α	Α
Marital status	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Household status	L	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Health	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	e
Gender	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Age	18	19	20	21	22	23	2/	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	4
Location	A	B	B	B	<u> </u>	25	24	25	20	<u> </u>	20	25	D	D	D	<u>л</u>	D	D	<u>л</u>	D	D	<u>л</u>		-11 D	D	D	D	D	D
Marital status	S	S	S	S	C	C	C	C	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	N
Household status	I	S	S	S	C	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Health	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	C
Gender					М	М	Μ	М	М	Μ	М	М	М	М	М	М	М	М	Μ	М	М	Μ	М	М	М	М	М	М	N
Age					24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	4
Location					С	С	С	С	С	С	С	С	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Marital status					С	С	С	С	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	N
Household status					С	С	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Health					G	G	G	G	G	G	G	G	G	G	G	Ρ	Р	Μ	Μ	G	G	G	G	G	G	G	G	G	e
Gender							М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	N
Age							0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2
Location							C	C	C	C	Ċ	C	D	D	D	D	D	D	D	D	D	D	D	D	D	E	E	E	E
Marital status							S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Household status							F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	S	S	S
Health							G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Gender										F	F	F	E	F	E	E	E	E	E	E	E	E	E	E	E	E	-	F	F
Age										г 0	г 1	г 2	г 3	г 4	г 5	6	7	г 8	г 9	10	Г 11	12	12	г 14	г 15	г 16	17	г 18	۲ 1
Location										0	T	2	D	4 D	D	D		0	9	D	D	12	13	14 D	T2	10 D	17 D	10 D	Ľ
Marital status										S	S	S	S	S	S	s	s	s	s	S	s	s	s	s	s	S	S	S	S
Household status	_									F	5	S E	5	5	5	F	5	5	5	F	5	5	5	5	F	F	5	S F	J
nousenoiustatus																													

MoSeS Dynamic Model - Example

Data Linkage

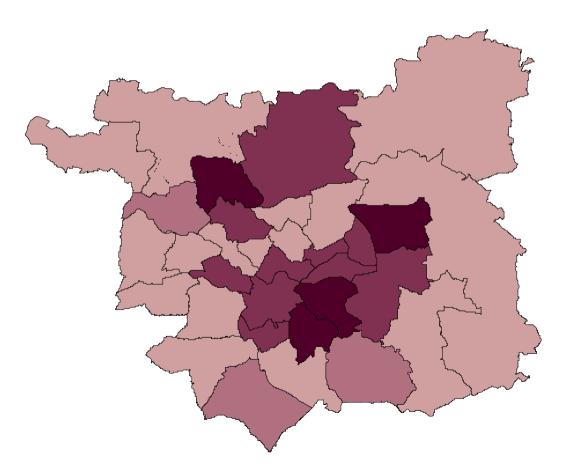
Usually conceived in MSM as a synthetic procedure

- Example linkage between HSAR and BHPS
- Linkage process based on shared attributes
- Types of match
 - Exact match
 - One-to-many (Monte Carlo)
 - One-to-one
 - Danger of accidental matches?
 - Perturb input data?
 - Restrict attribute set (dynamically?)
 - Fuzzy match

Data Linkage (Example)

SAR Data

- Age
- Gender
- Ethnicity
- Marital status
- Occupation
- Additional variables (x25)


BHPS Data

- Age
- Gender
- Ethnicity
- Marital status
- Occupation
- Additional variables (x1000+)

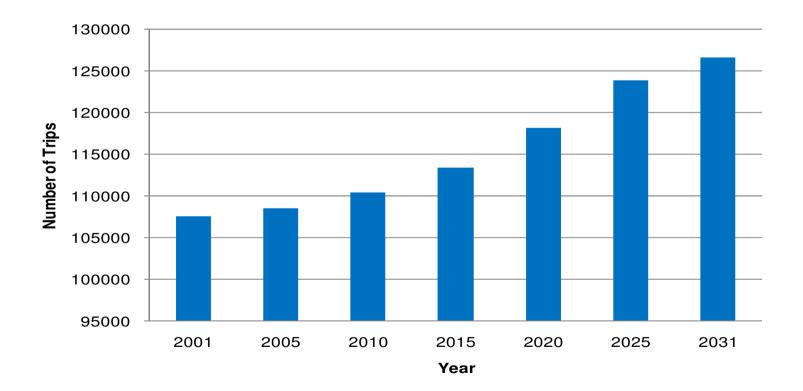
Data Linkage (Example)

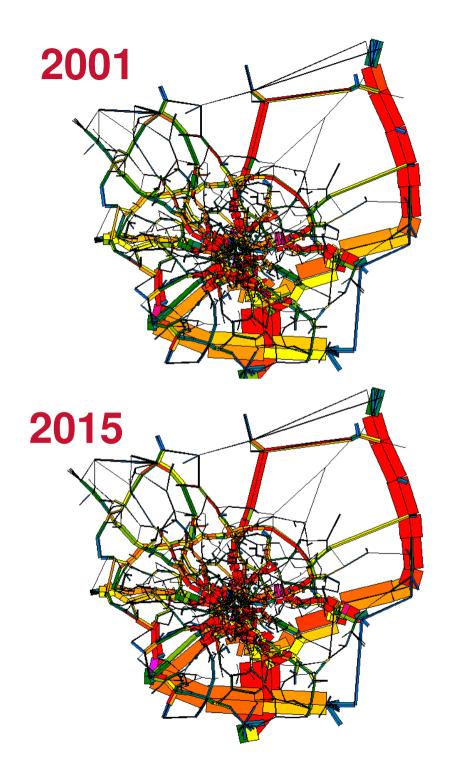
Disability in Leeds, 2006

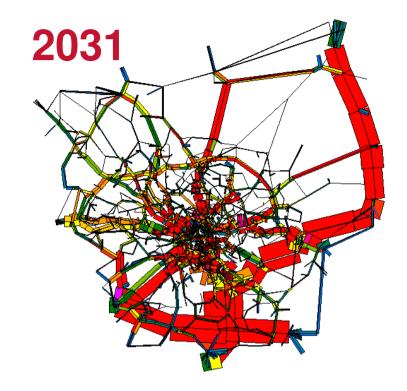
leeds_wards by disab

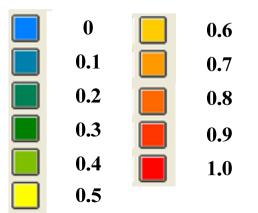
0.1	to	0.12	(4)
0.09	to	0.1	(10)
0.08	to	0.09	(16)
0.07	to	80.0	(3)
0	to	0.07	(3082)

Spatial Modelling


Use MSM data as inputs to


- Agent-based models
- Spatial interaction models
- Multi-level models?
- Econometric models?
- Pattern detection, geocomputation, network models, complex systems, AI, etc etc


Modelling - Example


Number of trips during morning peak in Leeds from 2001 to 2030

Traffic Intensity *

* Traffic Intensity=Traffic load/Road capacity

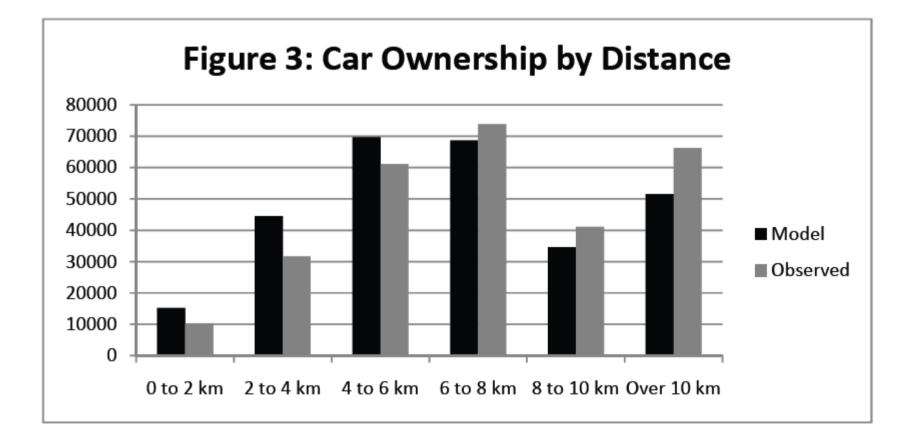
MSM and the NILS

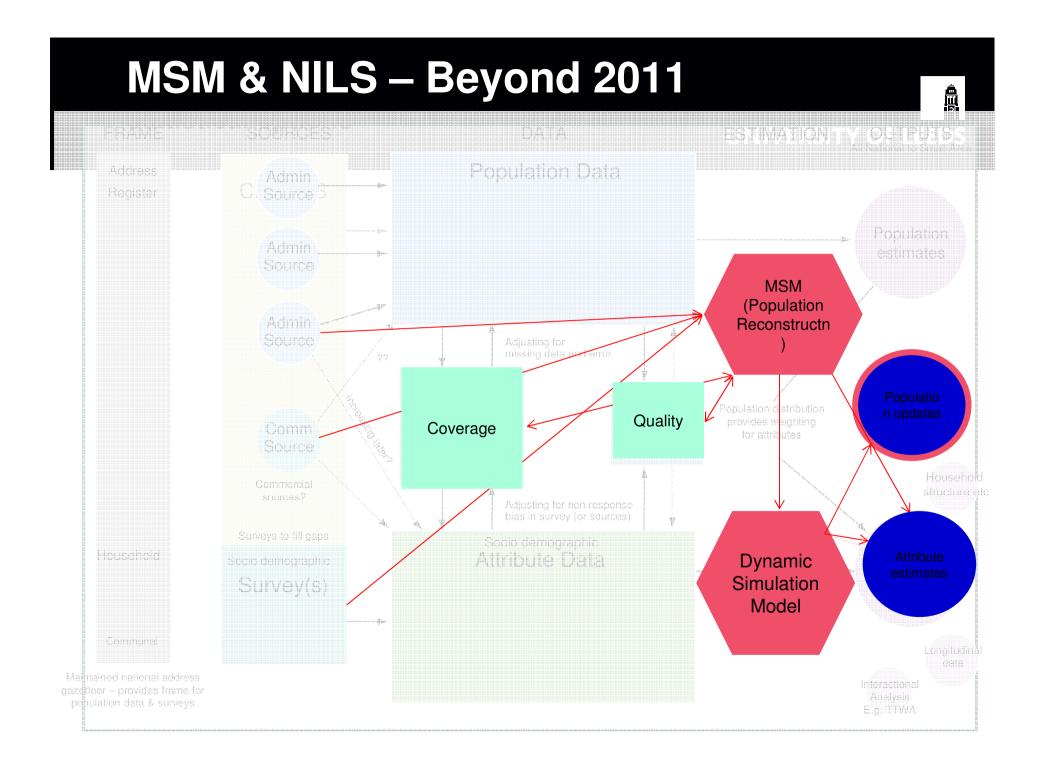
Synthetic modelling/ Population Reconstruction

- Synthetic NILS dataset with modelled events (births, deaths, migration)
- Improve remote access for users (dummy analyses for implementation within a safe setting)
- Linkage to new data sources education, transport,...?

Enhanced spatial models

- Models of morbidity, life expectancy which can be validated against NILS/ NIMS
- Representation of alcoholism, obesity, smoking...


MSM & NILS


Table 2: Estimates of birth statistics for a selection of wards in Leeds: first model run (source: Tomintz 2009)

Ward	Actual 2000-6	Predicted	Difference
Cookridge	294	298	4
Halton	187	195	8
Roundhay	229	232	3
Harehills	471	375	-96
Richmond Hill	272	214	-58
Seacroft	272	219	-53
Headingley	103	880	778

MSM & NILS

Conclusions and Next Steps

Integration of MSM with the NILS:

- Synthetic data sets for research use and testing
- Substantive applications for data linkage, simulation and validation
 Integration of MSM with GB LS
- Purposes as above
- Interaction with other datasets Understanding Society??

Contribution of MSM/ data linkage to the Beyond 2011 programme?

Parallel development of linked simulations – MSM + SIM + ABM (Talisman) + other spatial and statistical techniques (NeISS)