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Abstract 

BACKGROUND 

In the United Kingdom, there exist three Census-based longitudinal datasets, known 

collectively as the Longitudinal Studies. The England and Wales Longitudinal Study (LS) is a 

1% sample of the population of England and Wales It started with a sample from the 1971 

Census and links the records of individuals (and other members of the sample member’s 

household) from the last five censuses. There are around 500,000 individuals present at each 

census, although not all of these will be linked for the full time-series. The LS also records 

key life events such as births, deaths, marriages and cancer registrations. Similar datasets of 

linked Census records exist for Scotland and Northern Ireland, although these data have a 

shorter time-series (currently linked back to 1991) and larger sample fractions (which 

constitute around 5% and 28% of their populations respectively at each Census). Whilst 

immensely valuable datasets for demographic research in the UK, all of the Longitudinal 

Studies are under-used when compared to other Census data products. Part of the reason for 

this is the restricted access researchers have to the microdata due to the potentially disclosive 

detail contained within. Consequently, in order to introduce potential researchers to the data 

and increase the user-base, a synthetic general-use version of the Longitudinal Studies is 

proposed. 

OBJECTIVE 

This paper details a simple and reproducible method for generating a general use synthetic 

Longitudinal Study-like dataset from pre-existing Census microdata and non-disclosive 

outputs from the real Longitudinal datasets, using the England and Wales Longitudinal Study 

as the case example.  
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METHODS 

The new dataset will be known as the synthetic LS ‘spine’ dataset as it will only include 

transitions of key demographic variables included in the national LSs. It is generated using 

the 2011 England and Wales Teaching SAR (Samples of Anonymised Records) dataset, 

available from the Office for National Statistics and a series of 2011 back to 2001 transitional 

probabilities taken from the England and Wales LS. A series of algorithms, written in R, are 

used to firstly estimate the numbers of individuals in particular age groups undergoing each 

longitudinal state transition and then allocate transitions to the appropriate number of pre-

exiting individuals in the SAR micro-dataset, resulting in a new, plausible, LS-like dataset.  

RESULTS 

The England and Wales synthetic LS spine dataset augments the original ‘Teaching SAR’ 

dataset by, firstly, estimating single year of age values from broad age groups contained in 

the original. New ten year age groups are re-estimated from the new single year of age 

variables and ten-year transitions between 2011 and 2001 for categories of General Health 

(15 transitions), Marital Status (25 transitions), Religion (5 transitions), Approximate Social 

Grade (16 transitions) as well as estimates of the number of live births to females over the ten 

year period (4 categories) and a variable estimating those individuals who may have died 

over the period, based on age and general health status.  

CONCLUSION 

The method detailed here using the England and Wales case can be used to apply longitudinal 

transitions to all similar micro-datasets in the UK, and indeed elsewhere, where there might 

be a need to introduce people to the longitudinal microdata and its unique temporal 

transitions for individuals, but where access to these data are frequently restricted due to the 

need to protect the confidentiality of individuals in the study.  

The constraints imposed our own access to the data from the original LS dataset, in terms of 

being unable to remove small cell counts (those less than 10), from the secure microdata 

laboratory, mean that we are unable to account for some of the more nuanced interactions 

between variables – for example the interactions between general health and marital status as 

well as age. However, having chosen age as the key interacting variable with all others, we 

believe that we are able to generate a plausible longitudinal population relatively cost 

(manpower costs in terms of programming and computational costs in terms of processing 

time) effectively.  

The synthetic LS dataset for England and Wales which we have devised can be used by 

academics to train students in longitudinal methods and for researchers wishing to familiarise 

themselves with a range of variables in the census-based LSs. Any outputs which people 

generate will, in the main, provide a similar picture to results obtained using the original LS 

data but do not themselves have any research utility nor represent individuals in reality. 
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1 Introduction 
The United Kingdom is home to three Census-based longitudinal datasets, known collectively 

as the Longitudinal Studies. In England and Wales, the ONS Longitudinal Study (LS) 

comprises around a 1% sample of Census records (some 500,000 people at each Census), 

linking the full decennial Census returns of individuals (and members of their household) 

back to 1971. As well ask linking Census variables, key life events such as births (to 

members of the study), deaths and cancer registrations between censuses are also included. 

The Scottish and Northern Irish Longitudinal Studies (SLS and NILS respectively) have a 

shorter time-series than the LS (currently linked back to 1991) but have larger sample 

fractions (comprising around 5% and 28% of their populations respectively). Both the SLS 

and NILS feature linkage to additional health data not currently available in the LS. 

Collectively, however, these datasets comprise some of the richest demographic data 

available for research in the UK – and indeed the world.  

However, usage of the LSs is relatively low compared to other Census data products, with 

active projects using the data counted in double figures on an annual basis, whereas 

downloads of some of the more readily accessible census data products counted in the tens 

and even hundreds of thousands. Part of this under-usage it is almost certainly down to access 

restrictions; and part must be attributed to the nature and complexity of the data; but these 

two factors combined mean that it is very rare for undergraduates and those making their 

early steps in social science research careers to have been exposed to Longitudinal Study data 

at all.  

To address this problem, the Synthetic Data for the Longitudinal Studies (SYLLS) project has 

been funded by the Economic and Social Research Council, with two main aims: the first to 

introduce new scholars to Longitudinal Study-like data earlier in their careers by creating 

new, general usage synthetic teaching datasets, enabling plausible longitudinal analysis of 

LS-like microdata to be carried out for certain key variables. The teaching datasets are not 

designed with accuracy in mind (although counts of individuals undergoing particular 

transitions should not be wildly inaccurate), but rather as a pedagogic tool to introduce 

novices to longitudinal data. The second; to devise a new modelling methodology to allow 

requests for particular customised data requests from the Longitudinal Studies to be 

synthesised, so that microdata which look very much like the original (with accurate 

frequency distributions and modelling coefficients) can be released from the data custodians 

for use outside of the safe settings (where all research must presently be carried out), without 

fear of data disclosure and the compromise of confidentiality. The second of these aims has 

been achieved through the synthpop software developed in the R language and is reported 

elsewhere (Nowok, Raab, and Dibben 2014; Raab, Nowok, and Dibben 2015). This paper 

reports on the methodology employed to achieve the first of these aims – the creation of 

general usage teaching datasets.  

While general usage synthetic data will be created for each of the national Longitudinal 

Studies, here we report only on the first dataset – that generated for the England and Wales 

ONS LS. The methodology, however, will be identical for the ONS LS, SLS and NILS. 

Henceforth we will refer to this new synthetic ONS LS dataset as the ‘Synthetic Spine’ data.  
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2 Input Data 
The core data used to create the new England and Wales LS Synthetic Spine is the Office for 

National Statistics Microdata Teaching File5. This data file is freely available under the Open 

Government Licence and comprises a random 1% sample of the full 2011 Census output 

database for England and Wales. While derived from the more detailed Samples of 

Anonymised Records (SAR) data, the variables within the Teaching File have been 

aggregated to broad categories to minimise the likelihood of disclosive detail being released, 

with record swapping and mixing also used to add further uncertainty to unusual records. The 

Microdata Teaching File contains records for 569,741 individuals across 17 variables.  

Using the Microdata Teaching File has a number of advantages for this project. Firstly, the 

1% sample size is the same as that for the 2011 LS sample, meaning that realistic numbers of 

individuals will be undergoing longitudinal transitions. Secondly, being available under the 

Open Government Licence means that the newly derived LS spine dataset should also be 

available under the same terms, as long as any data extracted from the original LS dataset are 

also cleared for public release.  

In order to estimate the numbers of individuals undergoing the various transitions we wished 

to capture, data from the England and Wales ONS Longitudinal Study6 are also used. The 

data are for 4 key longitudinal state transitions from 2011 back to 2001, chosen for three 

main reasons: 

1) The variables are of key research interest to social scientists (examples of recent 

longitudinal research using each of the variables selected for inclusion are given 

before the definition of each, below). 

2) Equivalent or similar variables exist in both 2011 and 2001 so that a meaningful 

transition can be generated 

3) Variable disaggregation does not lead to an overabundance of table cell values under 

10 (the threshold for final output public access clearance for LS data). 

Transitional matrices consisting of counts of individuals undergoing each transition of 

interest in 9 ten-year age groups (age in 2011 with groups 10-19, 20-21, 30-39, 40-49, 50-59, 

60-69, 70-79, 80-89, 90-99) are generated for each variable of interest within the England and 

Wales LS. Age group 0-9 was not included as these individuals would not have been alive in 

2001. Additionally, an age group consisting of those older than 100 years was not included as 

very few individuals in the dataset are aged 100 and over.  

2.1 Transitional Variables Included 
General Health 

A number of health-related research projected have been undertaken using the national LSs in 

recent years, including Boyle (2010) and Dykstra et al. (2009).  

The General Health variable has 5 categories in 2011: 

1. Very good health 

                                                 
5 http://www.ons.gov.uk/ons/guide-method/census/2011/census-data/census-microdata/microdata-teaching-

file/index.html  
6 http://www.ucl.ac.uk/celsius  

http://www.ons.gov.uk/ons/guide-method/census/2011/census-data/census-microdata/microdata-teaching-file/index.html
http://www.ons.gov.uk/ons/guide-method/census/2011/census-data/census-microdata/microdata-teaching-file/index.html
http://www.ucl.ac.uk/celsius
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2. Good health 

3. Fair health 

4. Bad health 

5. Very bad health 

And 3 categories in 2001: 

1. Good health 

2. Fair health 

3. Bad health 

The transition matrix included all (5 × 3 = 15) transitions between the 2011 and 2001 

variables.  

Marital Status 

Marital Status was the focus of longitudinal research carried out by Feng et al. (2010). 

The Marital Status variable has been aggregated to 5 categories in 2011 which are 

comparable to the 2001 categories. These are: 

1. Single (never married or never registered a same-sex civil partnership) 

2. Married or in a registered same-sex civil partnership 

3. Separated but still legally married or separated but still legally in a same-sex civil 

partnership 

4. Divorced or formerly in a same-sex civil partnership which is now legally dissolved 

5. Widowed or surviving partner from a same-sex civil partnership 

Whilst it should not be possible for transitions between every state in 2001 and every state in 

2011 to occur (for example, it should not be possible for someone to be married in 2001 and 

single in 2011 given the separated, divorced or widowed category), in practice, errors in 

coding or census form completion by individuals means that improbable transitions can 

occur. Therefore, a full 5 × 5 = 25 matrix of transitions between 2011 and 2001 is used.  

Religion 

Religion has been the focus of a number of pieces of longitudinal research including Platt et 

al. (2014) and Simpson, Jivraj, and Warren (2014) 

While Religion has 9 categories (6 main religions in the UK, plus no religion, other religion 

and not stated) in the Microdata Teaching File dataset, a full 9 × 9 = 81 interaction matrix 

resulted in far too many small cell counts where, for example, transitions between the Muslim 

and Jewish faith are very small. Therefore we aggregated religion to the following transition 

matrix: 

2001 2011 

No Religion No Religion 

No Religion Religion 

Religion Same Religion 

Religion Different Religion 

Religion No Religion 
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Approximated Social Grade 

Social status and grade in another popular topic of longitudinal research, recent work 

including that by Champion, Coombes, and Gordon (2014) and Dini (2010). 

Approximated Social Grade (derived from occupation, employment status qualification, 

tenure and whether working full or part-time variables7) has 4 categories in the Microdata 

Teaching File dataset: 

1. AB – Upper Middle Class and Middle Class, Higher & intermediate managerial, 

administrative, professional occupations 

2. C1 – Lower Middle Class; Supervisory or clerical and junior managerial, 

administrative or professional 

3. C2 – Skilled Working Class; Skilled manual workers 

4. DE – Working Class and non-working; Semi and unskilled manual workers, casual or 

lowest grade workers, pensioners, and others who depend on the welfare state for 

their income 

Whilst these codes exist in both the 2011 and 2001 censuses, the variables and algorithms 

used to generate the social grade classification differ slightly, so the variables are not directly 

comparable. However, given that we are modelling state transitions, this does not matter a 

great deal. Consequently we use a full 4 × 4 = 16 matrix of transitions between 2011 and 

2001. 

Live Births 

Births to LS members allow for the estimation of fertility, with a number of pieces of 

research focusing on fertility using LS data, including Grundy (2009) and Robards, 

Berrington, and Hinde (2011). 

The births transition differs from other variables in that it is a motherhood transition and 

therefore only applies to the females in the dataset who give birth during the 10 year period. 

LS members who are already mothers but do not give birth during the transition period are 

not included. Live births to LS women between 2001 and 2011 are simply 4 categories of 

counts of 0, 1, 2 or 3 and more births.  

Deaths 

Mortality is a recurring theme in research using the longitudinal studies, with many studies 

using mortality as a key outcome. Work by Scott and Timæus (2013) is just one example of 

this.  

Counts of those who died between 2001 and 2011 by age, but also general health status are 

included in order that a death estimate variable could be generated. The matrix consisted of 

the dichotomous alive/dead in 2011 variable by the three 2001 general health categories by 

the same 9 age groups as for all other variables.  

                                                 
7 The model used to allocated Approximated Social Grade by the Market Research Society Census and 

Demographics group, with full details of their methodology available here: 

https://www.mrs.org.uk/pdf/Social%20Grade%20Allocation%20for%202011%20Census.pdf  

https://www.mrs.org.uk/pdf/Social%20Grade%20Allocation%20for%202011%20Census.pdf
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2.2 Transitional variables not included 
Of course an argument could be made for the inclusion of a number of other transitional 

variables, particularly migration (with longitudinal research such as that by Champion (2012) 

and Riva, Curtis, and Norman (2011)) and residence type. Time constraints relating to the 

delivery of the final data, however, have meant that for the present iteration, transitions are 

limited to those variables outlined above. Future  

3 Method 
The method we employ is, at its core, a simple one-dimensional proportional fitting exercise 

making it somewhat more straightforward than the multi-dimensional iterative proportional 

fitting first proposed by Deming and Stephan (1940) and exemplified in a social science 

context by Norman (1999) and Simpson and Tranmer (2005). It has been necessary to avoid 

multi-dimensional variable interactions due to the small cell counts that would occur in the 

transition matrices extracted from the raw Longitudinal Study data and the very practical 

constraint that we would not have been able to remove these small cell counts from the 

virtual microdata laboratory due to their disclosive potential. We could, of course, have 

estimated these variable interaction transitions, but given the pedagogic purpose of the 

dataset and the time constraints imposed by earlier unforeseen problems in the project, simple 

transitions are preferred. While the proportional fitting element of the exercise is relatively 

straightforward, a challenge still remains in allocating longitudinal transitions, for the 

variables described above, to appropriate individuals within the 2011 Microdata Teaching 

File. In order to do this, we have chosen age as our constraining variable – all transitions will 

be accurate when aggregated to age, although not necessarily when aggregated to another 

variable such as geographic region. The rationale for selecting age rather than any other 

common predictor of transitions is that it is almost certainly a better predictor of transitions 

between one variable state and another, than any other single variable. Furthermore, by 

constraining to age, we are likely to capture covariate interactions (such as transitions to ill 

health or marital status) in the process, resulting in (as will be shown at the end of this paper) 

plausible multi-variate transitions (marriage transitions by health status, for example) without 

attempting to achieve these explicitly in the estimation process. In addition, by using age in 

10 year age groups, the task of estimating transitions over a 10 year period is made much 

simpler.  

3.1 Estimating 10 year age groups 
The first problem to overcome is that in the SAR Microdata Teaching File, age is recorded 

for 8 uneven age groups (indices indicative of those used in the data): 

1.  0-15 

2.  16-24 

3.  25-34 

4.  35-44 

5.  45-54 

6.  55-64 

7.  65-74 

8.  75 and over 

These groups need to be re-estimated so that we have 11 even 10 year groups: 
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0. 0-9 

1. 10-19 

2. 20-29 

3. 30-39 

4. 40-49 

5. 50-59 

6. 60-69 

7. 70-79 

8. 80-89 

9. 90-99 

10. 100+ 

The rationale for this is simple – in the lowest age group, those aged 0-5 would still be in the 

same group 10 years later, thus making the 10 year transition difficult to calculate. Where all 

age groups are 10 years, then calculating a 10 year transition becomes more straightforward. 

To carry out the re-estimation to new groups, the single year of age for each person in each 

original age group needs to be estimated before they can then be allocated a new broad age 

group. To estimate the single year of age for each of the 569,741 individuals in the dataset, 

we use data on single year of age for each UK region from the 2011 Census aggregate tables8. 

These Census tables can be aggregated into any age group required and the relative 

proportions each single age comprises in each group calculated. In doing this, single year of 

age counts are disaggregated by region as well. This is needed due to the large differences in 

the proportion of the population in each age group in London compared to all other regions in 

England and Wales. 

The total number of individuals of single year of age 𝑎 in region 𝑟 will be a fraction of the 

total number of individuals in age group 𝐴 in region 𝑟: 

𝑎𝑟 ∈ 𝐴𝑟 

Such that: 

∑ =  𝐴𝑟

𝑛

𝑎𝑟=1

 

and 

∑
𝑎𝑟

𝐴𝑟

𝑛

𝑎𝑟=1

= 1 

By calculating all proportions of  
𝑎𝑟

𝐴𝑟 for each age group 𝐴𝑟 using the Census aggregate tables 

single year of age file, it is possible to decompose and re-estimate age group data as required. 

The method and R code to achieve this is detailed below in seven stages: 

                                                 
8 Office for National Statistics, 2011 Census: Aggregate data (England and Wales) [computer file]. 

UK Data Service Census Support. Downloaded from: http://infuse.mimas.ac.uk . This data is licensed 

under the terms of the Open Government Licence [http://www.nationalarchives.gov.uk/doc/open-

government-licence/version/2] 

http://infuse.mimas.ac.uk/
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2
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Stage 1 – Calculate the numbers of people in each age group for each region in the 

Microdata Teaching File 

First load into memory (‘library’) some packages we will use for data manipulation and then 

read in the data: 

library(plyr) 

library(reshape2) 

 

SAR2011<-read.csv("../SAR Data/rft-teaching-file/2011 Census 

Microdata Teaching File.csv") 

 

Calculate the numbers of people in each age group for each region in the SAR Data and store 

in a new data frame – this will be used in a later stage in the process.  

SARAgeTotals<-ddply(SAR2011, .(Region, Age), nrow) 

 

#cast back into a square data frame matrix 

 

SARAgeTotalsDF<-dcast(SARAgeTotals,Age~Region) 

 

Table 1 – Example of the SARAgeTotalsDF data frame 

Age group E12000001 E12000002 E12000003 E12000004 … 

1 4771 13266 9939 8474 … 

2 3425 9339 7164 5819 … 

3 3181 8999 6729 5309 … 

4 3414 9567 7313 6195 … 

5 3847 9862 7346 6608 … 

6 3361 8569 6255 5648 … 

… … … … … … 

 

Stage 2 – Read in single year of age data and aggregate to the 8 age groups in the 

Microdata Teaching File 

SingleYearAge<-read.csv("../SAR Data/AgeByRegion/SingleYearAge.csv") 

Table 2 – Example of the first rows and columns in the SingleYearAge data frame 

Single Year of Age E12000001 E12000002 E12000003 E12000004 E12000005 

Age under 1  30606 87370 65950 54274 71547 

Age 1 30202 86767 66738 54017 70778 

Age 2  29686 86133 65854 54168 71508 

Age 3  29934 86913 65663 54533 71329 

Age 4  29415 84908 64242 53182 69639 

Age 5  29041 83620 63577 52394 69048 

Age 6  27545 79699 60059 49603 66434 

Age 7  27103 77789 59182 49537 65326 

Age 8  26256 75408 57364 47884 63113 
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Create a vector containing the break values for each of the 8 uneven age groups and then use 

this vector to add the age group value to the date file in a new column called ‘AgeGrp’ 

AgeGrpVector<-c(16,25,35,45,55,65,75,101) 

 

#Use the following loop to the add values for the uneven age  

#groups to the single year of age file 

 

i=0 

j=1 

counter=0 

for (i in 0:nrow(SingleYearAge)){ 

  if (counter<=AgeGrpVector[j]){ 

    SingleYearAge[counter,"AgeGrp"]=j 

    counter=counter+1 

  } else { 

    j=j+1 

    next 

  }   

} 

Now calculate the total number of people in each of the 8 age groups by aggregating the 

SingleYearAge data frame into a new AgeGroups data frame using the new AgeGrp variable: 

AgeGroups<-

ddply(SingleYearAge,.(AgeGrp),summarise,E12000001=sum(E12000001),E12

000002=sum(E12000002),E12000003=sum(E12000003),E12000004=sum(E120000

04),E12000005=sum(E12000005),E12000006=sum(E12000006),E12000007=sum(

E12000007),E12000008=sum(E12000008),E12000009=sum(E12000009),W920000

04=sum(W92000004)) 

Table 3 – Example of the AgeGroups data frame 

AgeGrp E12000001 E12000002 E12000003 E12000004 … 

1 462437 1324548 997792 838455 … 

2 322208 858593 665550 547411 … 

3 315455 896267 668632 546384 … 

4 340381 964851 720793 627735 … 

5 377399 987491 725788 638957 … 

6 329521 849272 630607 561332 … 

… … … … … … 

 

Stage 3 – Calculate the proportion of each age group that each single year of age 

comprises 

Create two copies of the SingleYearAge data frame – one reordered so that the ‘AgeGroup’ 

variable is the new first column and a copy of this to put the new proportions into. 

SingleYearProps2<-SingleYearAge[c(12,2,3,4,5,6,7,8,9,10,11)] 

SingleYearEmpty<-SingleYearAge[c(12,2,3,4,5,6,7,8,9,10,11)] 
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To calculate the proportion of each age group that each single year of age comprises, loop 

through using the ‘AgeGroup’ column to calculate each proportion in turn.  

 

i=1 

j=1 

counter=1 

for (i in 1:nrow(SingleYearProps2)){ 

  if (SingleYearProps2[i,1]==AgeGroups[j,1]){ 

    SingleYearEmpty[i,2:11]<-

SingleYearProps2[i,2:11]/AgeGroups[j,2:11] 

    print(paste0("i=",i)) 

  }else{ 

    SingleYearEmpty[i,2:11]<-

SingleYearProps2[i,2:11]/AgeGroups[j+1,2:11] 

    j=j+1 

    print(paste0("j=",j)) 

    #i=i-1 

    #print(paste0("i=",i)) 

    next 

  } 

} 

Add the single year of age variable back in and re-order the data frames 

SingleYearEmpty$row.names<-SingleYearAge$X 

SingleYearProps3<-SingleYearEmpty[c(12,1,2,3,4,5,6,7,8,9,10,11)] 

 

Stage 4 – Using the proportions of each age group that each single year of age comprises 

from the aggregate Census data, calculate how many individuals in the Microdata 

Teaching File should have each single year of age. 

Create some copies of the single year of age data frames to store the new data in and then fill 

them with new data. Integers are needed but rounding may cause errors, so create two data 

frames, one rounded and one not – these will be used to assess the level of error in the next 

stage.  

#create some dummy data frames to store data in  

 

NumbersInAge<-SingleYearProps3[,-1] 

NumbersInAgeRound<-SingleYearProps3[,-1] 

Temp<-NumbersInAge 

Temp<-NumbersInAgeRound 

 

#now fill this data frame with estimated numbers of people in each 

#age group, rounded 

 

i=1 

j=1 

counter=1 

for (i in 1:nrow(Temp)){ 

  if(Temp[i,1]==SARAgeTotalsDF[j,1]){ 

    NumbersInAgeRound[i,2:11]<-

round(Temp[i,2:11]*SARAgeTotalsDF[j,2:11],0) 

    print(paste0("i=",i)) 
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  }else{ 

    NumbersInAgeRound[i,2:11]<-

round(Temp[i,2:11]*SARAgeTotalsDF[j+1,2:11],0) 

    j=j+1 

    print(paste0("j=",j)) 

    next 

  } 

} 

 

#now fill another data frame will estimated numbers of people in 

#each age group, not rounded 

 

i=1 

j=1 

counter=1 

for (i in 1:nrow(Temp)){ 

  if(Temp[i,1]==SARAgeTotalsDF[j,1]){ 

    NumbersInAge[i,2:11]<-Temp[i,2:11]*SARAgeTotalsDF[j,2:11] 

    print(paste0("i=",i)) 

  }else{ 

    NumbersInAge[i,2:11]<-Temp[i,2:11]*SARAgeTotalsDF[j+1,2:11] 

    j=j+1 

    print(paste0("j=",j)) 

    next 

  } 

} 

 

#add an ID column 

 

NumbersInAgeRound$ID<-seq(0,nrow(NumbersInAgeRound)-1) 

NumbersInAge$ID<-seq(0,nrow(NumbersInAge)-1) 

Stage 5 – Compare the rounded to the un-rounded file by generating an error matrix. 

Use this error matrix to then adjust the numbers in the data frame containing the 

rounded estimates for the number of individuals in the Microdata Teaching File at each 

age group 

#check that everything adds up 

 

NumbAgeAgg<-

ddply(NumbersInAge,.(AgeGrp),summarise,E12000001=sum(E12000001),E120

00002=sum(E12000002),E12000003=sum(E12000003),E12000004=sum(E1200000

4),E12000005=sum(E12000005),E12000006=sum(E12000006),E12000007=sum(E

12000007),E12000008=sum(E12000008),E12000009=sum(E12000009),W9200000

4=sum(W92000004)) 

 

NumbAgeRoundAgg<-

ddply(NumbersInAgeRound,.(AgeGrp),summarise,E12000001=sum(E12000001)

,E12000002=sum(E12000002),E12000003=sum(E12000003),E12000004=sum(E12

000004),E12000005=sum(E12000005),E12000006=sum(E12000006),E12000007=

sum(E12000007),E12000008=sum(E12000008),E12000009=sum(E12000009),W92

000004=sum(W92000004)) 

 

#it will not add up due to rounding errors, so generate a rounding 

#error matrix 
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ErrorMatrix<-NumbAgeAgg-NumbAgeRoundAgg 

 

#use the rounding error matrix to add or remove values from  

#the last single age in each age group using the AgeGrpVector from 

#before - crude, but it at least gets us to kind of where we want to 

#be... 

 

AgeGrpVector<-c(16,25,35,45,55,65,75,101) 

 

i=1 

j=1 

k=1 

for (i in 1:length(AgeGrpVector)){ 

  k=AgeGrpVector[i] 

  NumbersInAgeRound[k,2:11]<-

NumbersInAgeRound[k,2:11]+ErrorMatrix[j,2:11] 

  j=j+1 

} 

 

Table 4 – Example of the NumbersInAgeRound data frame 

Age AgeGrp E12000001 E12000002 E12000003 E12000004 … 

1 1 316 875 657 549 … 

2 1 312 869 665 546 … 

3 1 306 863 656 547 … 

4 1 309 870 654 551 … 

5 1 303 850 640 537 … 

… … … … … … … 

 

Stage 6 – Subset the Microdata Teaching File data frame (SAR2011) into separate 

regions and then add single year of age values to each individual using an algorithm 

that simply counts to each value in the NumbersInAgeRound data frame, adding values 

until the number is reached and then moves on to the new value. When complete, 

recombine everything back into a single data frame. 

 

#first create a region list from the unique values in SAR2011 

 

regionlist<-as.vector(unique(SAR2011$Region)) 

 

#this loop then subsets the data frame by regions and stores each 

#subset in a new data frame and stores each data frame in a list 

 

i=1 

dflist<-list() 

for (i in 1:length(regionlist)){ 

  region<-regionlist[i] 

  print(region) 

  #assign each dataframe to a list 
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  dflist[[i]]<-

assign(paste0("SARsub_",region),subset(SAR2011,SAR2011$Region==regio

n)) 

} 

 

#cycle through the dataframes in list and add single year of age 

#values in the appropriate places 

 

dataframe=1 

for (dataframe in 1:length(dflist)){ 

  dfname<-regionlist[dataframe] 

  df<-as.data.frame(dflist[dataframe])   

  i=1 

  j=1 

  counter=1  

  for (i in 1:nrow(df)){ 

    if (counter<=NumbersInAgeRound[j,dfname]){ 

      df[i,"AgeSingle"]<-NumbersInAgeRound[j,"ID"] 

      counter=counter+1 

    }else{ 

      df[i,"AgeSingle"]<-NumbersInAgeRound[j+1,"ID"] 

      counter=2 

      j=j+1 

    }   

  } 

  print(paste0("Finished estimation for region ",dfname)) 

  assign(paste0("SARsub",dfname),df) 

} 

 

#recombine everything back into the original data frame 

SAR2011<-

rbind(SARsubE12000001,SARsubE12000002,SARsubE12000003,SARsubE1200000

4,SARsubE12000005,SARsubE12000006,SARsubE12000007,SARsubE12000008,SA

RsubE12000009,SARsubW92000004) 

Stage 7 – Now a new single year of age has been estimated for each individual in the 

Microdata Teaching File, it is an elementary task to recode these single years of age into 

new, 10 year age groups.  

An efficient way to recode single year of age into 10 year groups is using a custom function: 

newvar<-0  

recode_agegroups<-function(original_age_variable){  

  newvar[original_age_variable >=100]<-10 

  newvar[original_age_variable >=90 & original_age_variable <=99]<-9  

  newvar[original_age_variable >=80 & original_age_variable <=89]<-8 

  newvar[original_age_variable >=70 & original_age_variable <=79]<-7  

  newvar[original_age_variable >=60 & original_age_variable <=69]<-6  

  newvar[original_age_variable >=50 & original_age_variable <=59]<-5   

  newvar[original_age_variable >=40 & original_age_variable <=49]<-4  

  newvar[original_age_variable >=30 & original_age_variable <=39]<-3  

  newvar[original_age_variable >=20 & original_age_variable <=29]<-2 

  newvar[original_age_variable >=10 & original_age_variable <=19]<-1  

  newvar[original_age_variable >=0 & original_age_variable <=9]<-0   

  return(newvar)  

} 
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This function can now be used to generate the new variable: 

SAR2011$Age10YrGrp<-recode_agegroups(SAR2011$AgeSingle) 

 

3.1.1 Drawbacks of the 10 year age estimation process 

The 10 year age estimation process will not generate absolutely accurate estimates. The main 

source of error is that in the first original uneven age group – 0-15, there are some individuals 

that should, in the main, not have their single year of age estimated as below the age of 5 – 

these are students. In the original Microdata Teaching File, there is a binary variable for 

student: 1=Student, 2=Non-Student. In this context a student is anyone who is either a school 

child or full time student. Given that children do not start school until the age of 5 in England 

and Wales and all children between the ages of 5 and 16 should be attending school, 

assuming an even spread of ages across the age group, we would expect that for the age 

group 0-15, roughly one third should be recorded as non-students and two-thirds as students. 

In reality this is not entirely the case as some young children attending nursery or private 

boarding schools will be included as students, however the majority will not. The algorithm 

used to estimate single year of age did not select out the under-5s and classify as non-

students, so around 23,000 individuals (around ¼ of the age group) may be misclassified. 

However, in the final release of the data, the single year of age variable is removed in order 

that the perception of potentially disclosive data being released is avoided. In this situation 

where only the new ten year age group remains in the data, then the errors associated with 

misallocation of students to the youngest single years of age are minimised through the 

aggregation.  

3.2  Estimating individuals undergoing longitudinal transitions for each of 

the variables – a general methodology 
The estimation of each longitudinal variable transition is carried out in almost exactly the 

same way (minor variations will be detailed later). Below the series of stages in this process 

are detailed using Approximated Social Grade as the exemplar. 

Stage 1 – Generating Transitional Probability Matrices 

Transitional matrices of the same format are generated for each variable of interest from ONS 

Longitudinal Study, broadly comparable to the example table below (Table 5) which shows 

the transitional counts for the Approximated Social Grade variable. 

Table 5 – Transitional counts between states of Approximated Social Grade, 2011-2001 

2011 2001 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 

1 1 0 200 4968 8608 7590 5805 3329 1092 0 

1 2 0 1033 5456 4954 4200 3682 1775 417 0 

1 3 0 183 808 903 695 505 309 87 0 

1 4 0 3003 2250 1089 839 1068 854 232 0 

2 1 11 236 2769 5450 5062 4128 2152 725 0 

2 2 29 1865 8969 11866 10954 9233 5668 2090 0 

2 3 10 422 1625 1850 1541 1449 843 218 0 

2 4 60 4732 4159 3722 2828 2785 2227 821 0 

3 1 0 83 669 1303 1260 999 441 114 0 

3 2 0 556 2031 3295 3054 2884 1525 399 0 
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3 3 0 805 3107 5318 5225 4029 2478 605 0 

3 4 0 2105 3464 4933 4255 3934 2294 591 0 

4 1 0 95 538 1003 1076 1439 943 313 0 

4 2 10 690 2162 3072 3115 3725 2309 616 0 

4 3 0 411 1403 2281 2452 2844 2262 715 0 

4 4 11 3379 6723 10162 9864 10433 9347 3531 11 

Source: ONS Longitudinal Study 

As 2011 is our base population, transitional probabilities are calculated from the counts of 

transitions with each 2001 state calculated as a proportion of the corresponding 2011 state in 

turn. Table 6 exemplifies this more clearly: 

Table 6 – Transitional probabilities for Approximated Social Grade, 2011-2001 

2011 2001 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 

1 1 0 0.045 0.368 0.553 0.570 0.525 0.531 0.597 0 

1 2 0 0.234 0.405 0.319 0.315 0.333 0.283 0.228 0 

1 3 0 0.041 0.060 0.058 0.052 0.046 0.049 0.048 0 

1 4 0 0.680 0.167 0.070 0.063 0.097 0.136 0.127 0 

2 1 0.1 0.033 0.158 0.238 0.248 0.235 0.198 0.188 0 

2 2 0.264 0.257 0.512 0.518 0.537 0.525 0.520 0.542 0 

2 3 0.091 0.058 0.093 0.081 0.076 0.082 0.077 0.057 0 

2 4 0.545 0.652 0.237 0.163 0.139 0.158 0.204 0.213 0 

3 1 0 0.023 0.072 0.088 0.091 0.084 0.065 0.067 0 

3 2 0 0.157 0.219 0.222 0.221 0.243 0.226 0.233 0 

3 3 0 0.227 0.335 0.358 0.379 0.340 0.368 0.354 0 

3 4 0 0.593 0.374 0.332 0.308 0.332 0.340 0.346 0 

4 1 0 0.021 0.050 0.061 0.065 0.078 0.063 0.060 0 

4 2 0.476 0.151 0.200 0.186 0.189 0.202 0.155 0.119 0 

4 3 0 0.090 0.130 0.138 0.149 0.154 0.152 0.138 0 

4 4 0.524 0.739 0.621 0.615 0.598 0.566 0.629 0.682 1 

Source: ONS Longitudinal Study 

Taking the first row of Table 5 (Transitions between social grade 1 (AB) in 2011 and social 

grade 1 in 2001), we can observe that at age group 20-29 (2011 age group), 200 individuals 

in the LS underwent that transition. Table 6 shows that this is a proportion of 0.045 (4.5%) of 

all people of social grade 1 at age group 20-29 in 2011 (200/(200+1033+183+3003)=0.045). 

For each 2011 variable, all 2001 state proportions at each age group will sum to 1. Similar 

transitional probability tables are generated for each of the variables outlined in section 2.  

Stage 2 – Apply transitional probabilities to Microdata Teaching File data to create 

estimates of the total number of people undergoing each transition 

The following code could be generalised to work for each variable in exactly the same way 

and indeed was used virtually identically for the estimation of each variable in the new 

synthetic dataset. 

Firstly read in the transitional probability table (Table 6). For Social Grade, this is known as 

‘Social.csv’. Then calculate some totals for social grade from the Microdata Teaching File 

####################################################################

#### 

#Social Grade 
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#before going any further create a pseuso ID column for reordering 

#data later on in the estimation process... 

 

SAR2011$Pseudo_ID<-seq(1,nrow(SAR2011)) 

 

##*notes 

#For social grade we have some difficult transitions in the 10-19 & 

#90-99 age groups - therefore I've borrowed the transitional probs 

#from the neighbouring age groups - 10-19 is the same as 20-29 and  

#90-99 is the same as 80-89... 

 

social_trans <-read.csv("Social.csv", header=TRUE) 

social_trans_totals <- social_trans 

social_trans_totals_round <- social_trans 

 

##calculate the social status totals 

SARSocialTotals<-ddply(SAR2011, .(Age10YrGrp, 

Approximated.Social.Grade), nrow) 

 

##cast back into a square matrix 

SARSocialTotalsDF<-

dcast(SARSocialTotals,Approximated.Social.Grade~Age10YrGrp) 

SARSocialTotalsDF<-SARSocialTotalsDF[2:5,c(1,3:11)] 

Next estimate the total number of people (un-rounded and rounded) undergoing each 

transition, using the transition matrix and calculate the error between the rounded and the un-

rounded estimates. 

#calculate the numbers of people undergoing each social transition 

 

i=1 

k=1 

for(i in 1:nrow(social_trans)){ 

  k<-social_trans[i,1] 

  social_trans_totals[i,3:11]<-

social_trans[i,3:11]*SARSocialTotalsDF[k,2:10] 

} 

 

i=1 

k=1 

for(i in 1:nrow(social_trans)){ 

  k<-social_trans[i,1] 

  social_trans_totals_round[i,3:11]<-

round(social_trans[i,3:11]*SARSocialTotalsDF[k,2:10],0) 

} 

 

#aggregate back into a matrix the same shape as SARSocialTotals 

social_trans_agg<-

ddply(social_trans_totals_round,.(Social_2011),summarise,X1=sum(X1),

X2=sum(X2),X3=sum(X3),X4=sum(X4),X5=sum(X5),X6=sum(X6),X7=sum(X7),X8

=sum(X8),X9=sum(X9)) 

 

 

######now generate an error matrix 

ErrorMatrix<-SARSocialTotalsDF-social_trans_agg 
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Next use the error matrix to alter the totals in the rounded estimate so that everything adds up 

to the expected total. To do this, first create a vector with the break values for each new 2011 

group in the transitional probabilities file. 

SocialGrpVector<-c(1,5,9,13) 

 

#now use the error matrix to update social_trans_totals_round 

i=1 

j=1 

k=1 

for (i in 1:length(SocialGrpVector)){ 

  k=SocialGrpVector[i] 

  social_trans_totals_round[k,3:11]<-

social_trans_totals_round[k,3:11]+ErrorMatrix[j,2:10] 

  j=j+1 

} 

 

#check that you've updated correctly - error matrix should be full 

of zeros 

social_trans_agg1<-

ddply(social_trans_totals_round,.(Social_2011),summarise,X1=sum(X1),

X2=sum(X2),X3=sum(X3),X4=sum(X4),X5=sum(X5),X6=sum(X6),X7=sum(X7),X8

=sum(X8),X9=sum(X9)) 

ErrorMatrix<-SARSocialTotalsDF-social_trans_agg1 

 

#if there is a little error in there - edit manually.  

social_trans_totals_round<-edit(social_trans_totals_round) 

Stage 3 – Use the estimates of the total number of people undergoing each transition to 

update the Microdata Teaching File with expected transitions for the correct number of 

people. 

The next stage is important as it both allows us to deal with missing data (-9 values) in the 

original file and makes sure that the estimates do not have strange regional allocations. In the 

original Microdata Teaching File, data are arranged in regional order, and so any algorithmic 

allocation of individuals undergoing each transition row-by-row in the data (as used here) 

would result in odd regional distributions. By splitting the Microdata Teaching File into 10 

year age groups to estimate each decennial transition in turn and then randomising the cases 

in the subset, we can protect against this error. The randomisation in this instance is carried 

out using the sample() base function in R. 

#first create an age group list from the unique values in SAR2011 

 

AgeGrpList<-as.vector(unique(SAR2011$Age10YrGrp)) 

 

#divide SAR2011 up into age groups, randomise and put -9s at the top  

i=1 

#create an empty list to store all of the elements of the data frame 

#in 

AgeGrpDFList<-list() 

 

for (i in 1:length(AgeGrpList)){ 

  AgeGrp<-AgeGrpList[i] 

  print(AgeGrp) 
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  #create the age group subset 

  temp_df<-subset(SAR2011,SAR2011$Age10YrGrp==AgeGrp) 

  #ramdomise the order of the subset 

  temp_df<-temp_df[sample(1:nrow(temp_df)),] 

  #now put the missing data (-9) values at the top of the file 

  temp_df<-arrange(temp_df,Approximated.Social.Grade) 

  AgeGrpDFList[[i]]<-assign(paste0("Age10YrGrp_",AgeGrp),temp_df) 

} 

 

Now the data have been subset by age group and randomised, the next stage is to use the 

estimates of the total number of people undergoing each transition to update the subsets with 

transitional values. The algorithm devised is sensitive to zeros contained in the transitional 

estimates, therefore to deal with zeros a custom function is implemented within the algorithm 

to identify rows where zeros may exist and inform the algorithm to skip to the next non-zero 

value. The algorithm is also designed to ignore the first and last age group subsets. The first 

age group subset is ignored as those aged 0-9 in 2011 will not have been born in 2001. The 

final subset is ignored as the numbers of individuals aged over 100 in 2011 that have 

undergone a marital, health, religious or social grade transition is deemed negligible.  

################################################################ 

#a function to create a vector identifying the rows of the matrix  

#with non-zeros data in 

 

indexVectorCreator<-function(transitionMatrix,column){ 

  index<-vector() 

  i=1   

  for (i in 1:nrow(transitionMatrix)){ 

    if (transitionMatrix[i,column]!=0){ 

      index[[i]]<-i 

    } else { 

      next 

    } 

  } 

  index<-index[!is.na(index)] 

  return(index) 

} 

################################################################# 

#Estimation loop 

############ 

 

dataframe=1 

for (dataframe in 3:length(AgeGrpDFList)-1){ 

  #create a little index vector so that the programme knows to 

  #ignore 0s in the loop   

  dfname<-AgeGrpList[dataframe] 

  df<-as.data.frame(AgeGrpDFList[dataframe])   

  i=1 

  j=1 

  counter=1   

  for (i in 1:nrow(df)){     

    if (df[i,"Approximated.Social.Grade"]==-9){ 

      df[i,"Social2001"]<--9 

      print(i) 
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      next 

    } else { 

      print(paste0("Sub-dataframe ",j," group number 

",indexcounter," row ",counter)) 

      index<-indexVectorCreator(social_trans_totals_round,dfname+2) 

      indexcounter<-index[[j]] 

      if 

(counter<=social_trans_totals_round[indexcounter,dfname+2]){ 

        df[i,"Social2001"]<-

social_trans_totals_round[indexcounter,"Social_2001"] 

        counter=counter+1 

      } else { 

        indexcounter<-index[[j+1]] 

        df[i,"Social2001"]<-

social_trans_totals_round[indexcounter,"Social_2001"] 

        counter=2 

        j=j+1 

      } 

    }     

  } 

  print(paste0("Finished estimation for social group ",dfname)) 

  assign(paste0("AgeSocialSub",dfname),df) 

} 

 

After the estimation loop has finished, create missing data values for the age 0-9 and 100+ 

age groups, recombine these with the newly estimated data, and rearrange back into the 

original order using the pseudo ID column. 

# create missing data values in first and last age groups 

Age10YrGrp_0$Social2001<--7 

Age10YrGrp_10$Social2001<--7 

 

#recombine everything back into a single data frame 

SAR2011<-

rbind(Age10YrGrp_0,AgeSocialSub1,AgeSocialSub2,AgeSocialSub3,AgeSoci

alSub4,AgeSocialSub5,AgeSocialSub6,AgeSocialSub7,AgeSocialSub8,AgeSo

cialSub9,Age10YrGrp_10) 

 

#reorder by pesudo_id 

SAR2011<-arrange(SAR2011,Pseudo_ID) 

 

write.csv(SAR2011,"SAR2011.csv") 

 

3.3 Special Estimation Cases 
While the methodology described above in section 3.2 is used almost identically for each 

variable in the synthetic data set, there are some special cases where the method varied 

slightly. The variation occurs in the data preparation stage, so will be outlined briefly here. 

3.3.1 Religion 

Religion posed a unique problem as the variable itself was recoded from the original 9 

category variable in 2011 to a binary Religion/No Religion variable. This in turn led to the 

possibility that individuals could transition between these states, but also from religion to 
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religion where the religion stayed the same and religion to religion where the religion is 

different.  

These transitions are generated from the original LS data, but as the synthetic dataset creates 

estimates moving backwards from 2011 to 2001, a multi-staged process was required.  

Stage 1 – Recode the 2011 Religion variable into a binary religion variable 

newvar<-0  

recode_religion<-function(original_religion_variable){  

  newvar[original_religion_variable ==-9]<--9 

  newvar[original_religion_variable ==1]<-1  

  newvar[original_religion_variable ==2]<-2 

  newvar[original_religion_variable ==3]<-2  

  newvar[original_religion_variable ==4]<-2  

  newvar[original_religion_variable ==5]<-2   

  newvar[original_religion_variable ==6]<-2  

  newvar[original_religion_variable ==7]<-2  

  newvar[original_religion_variable ==8]<-2 

  newvar[original_religion_variable ==9]<-2  

  return(newvar)  

} 

 

#now create a new variable in the SAR2011 dataset which is the re-

coded 

#religion data 

SAR2011$ReligionBinary<-recode_religion(SAR2011$Religion) 

Stage 2 – Estimate the number of people by religion in 2011 who had a different religion 

in 2001 from the LS transitional probabilities. 

To carry out this estimation, firstly create a table with the sum of each binary religion 

variable for each age group in the data set, then divide the religious group into same religion 

and different religion using proportions derived from the LS data. Use this new table of non-

religious, religious (same religion) and religious (different religion) (Table 7) to  

Table 7 – Ternary religion 2011 estimated from LS proportions 

Religion_2011 ReligionBinary 10-19 20-29 30-39 40-49 … 

-9 -9 2972 3083 99 10 … 

1 1 22084 27185 23847 21393 … 

2 2 45693 49485 50187 60424 … 

3 2 280 597 553 534 … 

 

If we call Table 7 ‘relig_recode’ we can use the following code to create a new ternary 

religion variable for 2011. 

dataframe=1 

for (dataframe in 3:length(AgeGrpDFList)-1){ 

  dfname<-AgeGrpList[dataframe] 

  df<-as.data.frame(AgeGrpDFList[dataframe])   

  i=1 

  j=3 
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  counter=1  

  for (i in 1:nrow(df)){ 

    if (df[i,"ReligionBinary"]==-9){ 

      df[i,"ReligionTernary"]<--9 

      #print(i) 

      next 

    } else if (df[i,"ReligionBinary"]==1){ 

      df[i,"ReligionTernary"]<-1 

      #print(i) 

      next 

    } else { 

      print(paste0("starting next loop - counter is: ",counter))       

      if (counter<=relig_recode[j,dfname+2]){ 

        df[i,"ReligionTernary"]<-relig_recode[j,"Religion_2011"] 

        counter=counter+1 

      } else { 

        df[i,"ReligionTernary"]<-relig_recode[j+1,"Religion_2011"] 

        counter=2 

        j=j+1 

      }   

    }     

  } 

  print(paste0("Finished estimation for ReligionTernary ",dfname)) 

  assign(paste0("ReligSub",dfname),df) 

} 

 

#create some missing data values for the first and last age groups 

Age10YrGrp_0$ReligionTernary<--7 

Age10YrGrp_10$ReligionTernary<--7 

 

#recombine everything back into a single dataframe 

SAR2011<-

rbind(Age10YrGrp_0,ReligSub1,ReligSub2,ReligSub3,ReligSub4,ReligSub5

,ReligSub6,ReligSub7,ReligSub8,ReligSub9,Age10YrGrp_10) 

 

#reorder by pesudo_id 

SAR2011<-arrange(SAR2011,Pseudo_ID) 

 

Having recoded 2011 religion into a ternary value, we can then use the method described in 

Section 3.2 to finish the estimation process.  

3.4 Births and Deaths 
 

The estimation of births and deaths in the data is somewhat of a special case, but again, uses 

very similar programmatic loops to those described above to randomise and then apportion 

transitions to the correct numbers of individuals at each age group.  

In order to estimate births, we simply count the number of live births (0, 1, 2, 3 or more) to 

LS members between 2001 and 2011 for females in each age group. We then generate 

probabilities as before, apply these to our SAR data (female population only, of course) to 

calculate the number of individuals who should transition and then, as before, randomise and 

update the microdata records.  
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With the death transition, we are able to incorporate an interaction with health and age in 

2001 without small numbers becoming an issue. Clearly age interacting with general health is 

likely to result in more reliable death transitions than age interacting with any of our other 

chosen variables. Probabilities of death between 2001 and 2011 are calculated for each age 

group and each general health category, e.g. Good Health 2001 to Alive 2011, Good Health 

2001 to dead 2011, etc. and then applied to populations in these sub-categories to estimate 

individuals undergoing each transition, before randomisation of individuals and the 

assignment to the transition to individuals using the loops described before.  

4 Results 
The completed synthetic spine for England and Wales can now be downloaded from 

https://dl.dropboxusercontent.com/u/8649795/NewSpine.zip. 

As well as the 17 original variables from the 2011 SAR teaching file, there exist 10 synthetic 

variables – 5 longitudinal transitions from 2001 (age, religion, health, marital status, 

approximate social grade, births to mothers and deaths);1 re-estimation of the original age 

group variable into a new 10 year-age group variable; and 2 re-estimations of the 2011 

religion variable into binary (religious/non-religious) and ternary (same religion, different 

religion, religion to no religion) groupings.  

Returning to the original aims of this project, we set out to produce a general usage synthetic 

dataset which can be used to introduce novices to longitudinal data. As such, our concern was 

with producing something which was usable and contained broadly plausible transitions and 

that it could be produced relatively quickly (after earlier unforeseen problems in the project). 

Our choice of age as the constraining variable for the transitions that occurred between other 

variable states between 2001 and 2011 appears to have been a sensible one, as due to age 

being collinear with a number of other variables such as marital status and health, we have 

actually captured some of these multi-variate interactions in the process. To explain consider 

the following example using Marital Status Transitions: 

https://dl.dropboxusercontent.com/u/8649795/NewSpine.zip
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Figure 1 – Transitions between Marital Status, 2001 to 2011, all ages, SYLLS Synthetic 

Estimates 
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Figure 2 – Transitions between Marital Status, 2001 to 2011, Age 60-69 (in 2001), 

SYLLS Synthetic Estimates 

 

 

Figures 1 and 2 show transitions between martial states between 2001 and 2011 in the 

synthetic spine dataset. While Figure 1 represents all ages Figure 2 examines these transitions 

for those aged 60-69 in 2001. As we might expect, a much larger proportion of those aged 

60-69 in 2001 are married compared to the overall figure. Equally, the proportion of those 

transitioning from married to widowed is far more pronounced in this age group. Now we 

would also expect that for those transitioning from married to widowed, this transition might 

be more likely where the deceased partner suffered from poor health at the beginning of the 

period. It might be an incorrect assumption to make, but if we assume for the time being that 
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the poor health of one partner may also be experienced by the other if they experience the 

same environmental and socio-economic conditions which could give rise to poor health, 

then we might expect a greater proportion of those with poor health in 2001 transitioning 

from married to widowed than those with good health. Examining Table 8 below, we can see 

that this is indeed the case, with 12.7% of those with bad or very bad health in 2001 

transitioning from married to widowed, whereas only 5.7% of those with good health 

underwent the same transition. 

Table 8 – Proportions of those with a given marital state and health status in 2001 

transitioning to another martial state in 2011.  

Health2001 Marital 2011 Total 

Single Married Separated Divorced Widowed 

Good 

/ V 

Good 

Marital 

2001 

Single 79.7 17.5 1.2 1.5 0.2 100.0 

Married 0.3 84.9 3.3 5.9 5.7 100.0 

Separated 2.0 31.1 21.5 41.3 4.1 100.0 

Divorced 2.3 23.6 2.2 70.1 1.8 100.0 

Widowed 1.3 5.0 0.5 1.2 92.1 100.0 

Total 45.5 40.9 2.3 7.2 4.1 100.0 

Fair Marital 

2001 

Single 77.2 18.8 1.5 2.2 0.4 100.0 

Married 0.2 81.2 2.8 4.9 11.0 100.0 

Separated 1.6 23.7 25.9 42.5 6.3 100.0 

Divorced 1.9 17.0 1.9 76.4 2.8 100.0 

Widowed 0.6 3.1 0.3 0.9 95.0 100.0 

Total 25.8 49.3 2.6 10.3 12.0 100.0 

Bad / 

V 

Bad 

Marital 

2001 

Single 79.3 15.5 1.8 2.7 0.7 100.0 

Married 0.2 78.7 3.0 5.4 12.7 100.0 

Separated 1.3 17.0 32.2 41.7 7.8 100.0 

Divorced 2.0 12.4 2.0 80.5 3.1 100.0 

Widowed 0.7 2.6 0.5 1.1 95.1 100.0 

Total 19.0 49.3 3.2 13.2 15.3 100.0 

 

Of course, these assumptions may be incorrect, but the synthetic data at least captures a 

plausible multi-variable transition thanks to age acting as the main constraint in the 

estimation process. Scrutinising the table further, other plausible interactions can be 

identified, such as the slightly lower likelihood of single people with poor health transitioning 

to married than those with good health undergoing the same transition.  

5 Conclusions 
This paper has detailed a generalisable method for applying longitudinal transitions to pre-

existing microdata in order to produce a universal, publicly available teaching dataset 

enabling new researchers to familiarise themselves with the unique properties of longitudinal 

microdata outside of restrictive secure data laboratories. The intention is that datasets such as 

the Synthetic Spine will be used widely in introductory teaching classes.  
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There are various improvements that can be made to this dataset, such as the inclusion of 

additional variable transitions (region and a 10 year inter-region migration transition would 

be particularly useful) or a longer time series (going back to the 1991 Census or even 

further). But as this paper has demonstrated, the simplicity of the method and the algorithms 

for updating individual microdata cases means that the Synthetic Spine can be easily 

extended in the future. Furthermore, once similar transitional matrices have been produced 

from the Scottish and Northern Irish Longitudinal Studies, the same techniques can be 

applied to the SAR teaching files for Northern Ireland and Scotland generating comparable 

Synthetic Spine data for these countries and completing a full UK Synthetic Longitudinal 

Spine dataset.  
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